Copied to
clipboard

G = C42.237D10order 320 = 26·5

57th non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.237D10, C4⋊C4.206D10, (D5×C42)⋊11C2, C42.C216D5, D208C435C2, D102Q836C2, C4.D2024C2, C4⋊D20.12C2, Dic53Q835C2, D10.16(C4○D4), C20.128(C4○D4), (C2×C10).235C24, (C2×C20).506C23, (C4×C20).195C22, C4.19(Q82D5), D10.13D433C2, Dic5.75(C4○D4), (C2×D20).169C22, C4⋊Dic5.241C22, C22.256(C23×D5), D10⋊C4.60C22, (C2×Dic5).379C23, (C4×Dic5).150C22, C10.D4.51C22, (C22×D5).101C23, C510(C23.36C23), (C2×Dic10).185C22, C2.86(D5×C4○D4), C4⋊C47D535C2, C4⋊C4⋊D533C2, (C5×C42.C2)⋊8C2, C10.197(C2×C4○D4), C2.22(C2×Q82D5), (C2×C4×D5).134C22, (C2×C4).79(C22×D5), (C5×C4⋊C4).190C22, SmallGroup(320,1363)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.237D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C42 — C42.237D10
C5C2×C10 — C42.237D10
C1C22C42.C2

Generators and relations for C42.237D10
 G = < a,b,c,d | a4=b4=d2=1, c10=a2, ab=ba, cac-1=dad=ab2, cbc-1=dbd=a2b, dcd=a2c9 >

Subgroups: 830 in 234 conjugacy classes, 99 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C22×D5, C22×D5, C23.36C23, C4×Dic5, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, C2×D20, C2×D20, D5×C42, C4.D20, Dic53Q8, C4⋊C47D5, D208C4, D208C4, D10.13D4, C4⋊D20, D102Q8, C4⋊C4⋊D5, C5×C42.C2, C42.237D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, C22×D5, C23.36C23, Q82D5, C23×D5, C2×Q82D5, D5×C4○D4, C42.237D10

Smallest permutation representation of C42.237D10
On 160 points
Generators in S160
(1 108 11 118)(2 72 12 62)(3 110 13 120)(4 74 14 64)(5 112 15 102)(6 76 16 66)(7 114 17 104)(8 78 18 68)(9 116 19 106)(10 80 20 70)(21 140 31 130)(22 158 32 148)(23 122 33 132)(24 160 34 150)(25 124 35 134)(26 142 36 152)(27 126 37 136)(28 144 38 154)(29 128 39 138)(30 146 40 156)(41 157 51 147)(42 121 52 131)(43 159 53 149)(44 123 54 133)(45 141 55 151)(46 125 56 135)(47 143 57 153)(48 127 58 137)(49 145 59 155)(50 129 60 139)(61 89 71 99)(63 91 73 81)(65 93 75 83)(67 95 77 85)(69 97 79 87)(82 101 92 111)(84 103 94 113)(86 105 96 115)(88 107 98 117)(90 109 100 119)
(1 126 89 143)(2 137 90 154)(3 128 91 145)(4 139 92 156)(5 130 93 147)(6 121 94 158)(7 132 95 149)(8 123 96 160)(9 134 97 151)(10 125 98 142)(11 136 99 153)(12 127 100 144)(13 138 81 155)(14 129 82 146)(15 140 83 157)(16 131 84 148)(17 122 85 159)(18 133 86 150)(19 124 87 141)(20 135 88 152)(21 75 41 112)(22 66 42 103)(23 77 43 114)(24 68 44 105)(25 79 45 116)(26 70 46 107)(27 61 47 118)(28 72 48 109)(29 63 49 120)(30 74 50 111)(31 65 51 102)(32 76 52 113)(33 67 53 104)(34 78 54 115)(35 69 55 106)(36 80 56 117)(37 71 57 108)(38 62 58 119)(39 73 59 110)(40 64 60 101)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 5)(2 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 60)(29 59)(30 58)(31 57)(32 56)(33 55)(34 54)(35 53)(36 52)(37 51)(38 50)(39 49)(40 48)(61 102)(62 101)(63 120)(64 119)(65 118)(66 117)(67 116)(68 115)(69 114)(70 113)(71 112)(72 111)(73 110)(74 109)(75 108)(76 107)(77 106)(78 105)(79 104)(80 103)(82 100)(83 99)(84 98)(85 97)(86 96)(87 95)(88 94)(89 93)(90 92)(121 125)(122 124)(126 140)(127 139)(128 138)(129 137)(130 136)(131 135)(132 134)(141 159)(142 158)(143 157)(144 156)(145 155)(146 154)(147 153)(148 152)(149 151)

G:=sub<Sym(160)| (1,108,11,118)(2,72,12,62)(3,110,13,120)(4,74,14,64)(5,112,15,102)(6,76,16,66)(7,114,17,104)(8,78,18,68)(9,116,19,106)(10,80,20,70)(21,140,31,130)(22,158,32,148)(23,122,33,132)(24,160,34,150)(25,124,35,134)(26,142,36,152)(27,126,37,136)(28,144,38,154)(29,128,39,138)(30,146,40,156)(41,157,51,147)(42,121,52,131)(43,159,53,149)(44,123,54,133)(45,141,55,151)(46,125,56,135)(47,143,57,153)(48,127,58,137)(49,145,59,155)(50,129,60,139)(61,89,71,99)(63,91,73,81)(65,93,75,83)(67,95,77,85)(69,97,79,87)(82,101,92,111)(84,103,94,113)(86,105,96,115)(88,107,98,117)(90,109,100,119), (1,126,89,143)(2,137,90,154)(3,128,91,145)(4,139,92,156)(5,130,93,147)(6,121,94,158)(7,132,95,149)(8,123,96,160)(9,134,97,151)(10,125,98,142)(11,136,99,153)(12,127,100,144)(13,138,81,155)(14,129,82,146)(15,140,83,157)(16,131,84,148)(17,122,85,159)(18,133,86,150)(19,124,87,141)(20,135,88,152)(21,75,41,112)(22,66,42,103)(23,77,43,114)(24,68,44,105)(25,79,45,116)(26,70,46,107)(27,61,47,118)(28,72,48,109)(29,63,49,120)(30,74,50,111)(31,65,51,102)(32,76,52,113)(33,67,53,104)(34,78,54,115)(35,69,55,106)(36,80,56,117)(37,71,57,108)(38,62,58,119)(39,73,59,110)(40,64,60,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(61,102)(62,101)(63,120)(64,119)(65,118)(66,117)(67,116)(68,115)(69,114)(70,113)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153)(148,152)(149,151)>;

G:=Group( (1,108,11,118)(2,72,12,62)(3,110,13,120)(4,74,14,64)(5,112,15,102)(6,76,16,66)(7,114,17,104)(8,78,18,68)(9,116,19,106)(10,80,20,70)(21,140,31,130)(22,158,32,148)(23,122,33,132)(24,160,34,150)(25,124,35,134)(26,142,36,152)(27,126,37,136)(28,144,38,154)(29,128,39,138)(30,146,40,156)(41,157,51,147)(42,121,52,131)(43,159,53,149)(44,123,54,133)(45,141,55,151)(46,125,56,135)(47,143,57,153)(48,127,58,137)(49,145,59,155)(50,129,60,139)(61,89,71,99)(63,91,73,81)(65,93,75,83)(67,95,77,85)(69,97,79,87)(82,101,92,111)(84,103,94,113)(86,105,96,115)(88,107,98,117)(90,109,100,119), (1,126,89,143)(2,137,90,154)(3,128,91,145)(4,139,92,156)(5,130,93,147)(6,121,94,158)(7,132,95,149)(8,123,96,160)(9,134,97,151)(10,125,98,142)(11,136,99,153)(12,127,100,144)(13,138,81,155)(14,129,82,146)(15,140,83,157)(16,131,84,148)(17,122,85,159)(18,133,86,150)(19,124,87,141)(20,135,88,152)(21,75,41,112)(22,66,42,103)(23,77,43,114)(24,68,44,105)(25,79,45,116)(26,70,46,107)(27,61,47,118)(28,72,48,109)(29,63,49,120)(30,74,50,111)(31,65,51,102)(32,76,52,113)(33,67,53,104)(34,78,54,115)(35,69,55,106)(36,80,56,117)(37,71,57,108)(38,62,58,119)(39,73,59,110)(40,64,60,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,54)(35,53)(36,52)(37,51)(38,50)(39,49)(40,48)(61,102)(62,101)(63,120)(64,119)(65,118)(66,117)(67,116)(68,115)(69,114)(70,113)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(82,100)(83,99)(84,98)(85,97)(86,96)(87,95)(88,94)(89,93)(90,92)(121,125)(122,124)(126,140)(127,139)(128,138)(129,137)(130,136)(131,135)(132,134)(141,159)(142,158)(143,157)(144,156)(145,155)(146,154)(147,153)(148,152)(149,151) );

G=PermutationGroup([[(1,108,11,118),(2,72,12,62),(3,110,13,120),(4,74,14,64),(5,112,15,102),(6,76,16,66),(7,114,17,104),(8,78,18,68),(9,116,19,106),(10,80,20,70),(21,140,31,130),(22,158,32,148),(23,122,33,132),(24,160,34,150),(25,124,35,134),(26,142,36,152),(27,126,37,136),(28,144,38,154),(29,128,39,138),(30,146,40,156),(41,157,51,147),(42,121,52,131),(43,159,53,149),(44,123,54,133),(45,141,55,151),(46,125,56,135),(47,143,57,153),(48,127,58,137),(49,145,59,155),(50,129,60,139),(61,89,71,99),(63,91,73,81),(65,93,75,83),(67,95,77,85),(69,97,79,87),(82,101,92,111),(84,103,94,113),(86,105,96,115),(88,107,98,117),(90,109,100,119)], [(1,126,89,143),(2,137,90,154),(3,128,91,145),(4,139,92,156),(5,130,93,147),(6,121,94,158),(7,132,95,149),(8,123,96,160),(9,134,97,151),(10,125,98,142),(11,136,99,153),(12,127,100,144),(13,138,81,155),(14,129,82,146),(15,140,83,157),(16,131,84,148),(17,122,85,159),(18,133,86,150),(19,124,87,141),(20,135,88,152),(21,75,41,112),(22,66,42,103),(23,77,43,114),(24,68,44,105),(25,79,45,116),(26,70,46,107),(27,61,47,118),(28,72,48,109),(29,63,49,120),(30,74,50,111),(31,65,51,102),(32,76,52,113),(33,67,53,104),(34,78,54,115),(35,69,55,106),(36,80,56,117),(37,71,57,108),(38,62,58,119),(39,73,59,110),(40,64,60,101)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,5),(2,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,60),(29,59),(30,58),(31,57),(32,56),(33,55),(34,54),(35,53),(36,52),(37,51),(38,50),(39,49),(40,48),(61,102),(62,101),(63,120),(64,119),(65,118),(66,117),(67,116),(68,115),(69,114),(70,113),(71,112),(72,111),(73,110),(74,109),(75,108),(76,107),(77,106),(78,105),(79,104),(80,103),(82,100),(83,99),(84,98),(85,97),(86,96),(87,95),(88,94),(89,93),(90,92),(121,125),(122,124),(126,140),(127,139),(128,138),(129,137),(130,136),(131,135),(132,134),(141,159),(142,158),(143,157),(144,156),(145,155),(146,154),(147,153),(148,152),(149,151)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T5A5B10A···10F20A···20L20M···20T
order122222224···4444444444444445510···1020···2020···20
size1111101020202···244445555101010102020222···24···48···8

56 irreducible representations

dim1111111111122222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4C4○D4D10D10Q82D5D5×C4○D4
kernelC42.237D10D5×C42C4.D20Dic53Q8C4⋊C47D5D208C4D10.13D4C4⋊D20D102Q8C4⋊C4⋊D5C5×C42.C2C42.C2Dic5C20D10C42C4⋊C4C4C2
# reps11112321121244421248

Matrix representation of C42.237D10 in GL6(𝔽41)

3200000
0320000
00403300
000100
000010
000001
,
1390000
0400000
0032000
0003200
0000400
0000040
,
1390000
1400000
001000
00104000
000016
0000356
,
100000
1400000
001000
00104000
0000400
000061

G:=sub<GL(6,GF(41))| [32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,33,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,39,40,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,1,0,0,0,0,39,40,0,0,0,0,0,0,1,10,0,0,0,0,0,40,0,0,0,0,0,0,1,35,0,0,0,0,6,6],[1,1,0,0,0,0,0,40,0,0,0,0,0,0,1,10,0,0,0,0,0,40,0,0,0,0,0,0,40,6,0,0,0,0,0,1] >;

C42.237D10 in GAP, Magma, Sage, TeX

C_4^2._{237}D_{10}
% in TeX

G:=Group("C4^2.237D10");
// GroupNames label

G:=SmallGroup(320,1363);
// by ID

G=gap.SmallGroup(320,1363);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,1123,346,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^10=a^2,a*b=b*a,c*a*c^-1=d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*c^9>;
// generators/relations

׿
×
𝔽